Matematika (dari bahasa Yunani: μαθηματικά - mathēmatiká) adalah studi besaran, struktur, ruang, dan perubahan. Para matematikawan mencari berbagai pola,[2][3] merumuskan konjektur baru, dan membangun kebenaran melalui metode deduksi yang kaku dari aksioma-aksioma dan definisi-definisi yang bersesuaian.[4]
Terdapat perselisihan tentang apakah objek-objek matematika seperti bilangan dan titik hadir secara alami, atau hanyalah buatan manusia. Seorang matematikawan Benjamin Peirce menyebut matematika sebagai "ilmu yang menggambarkan simpulan-simpulan yang penting".[5] Di pihak lain, Albert Einstein menyatakan bahwa "sejauh hukum-hukum matematika merujuk kepada kenyataan, mereka tidaklah pasti; dan sejauh mereka pasti, mereka tidak merujuk kepada kenyataan."[6]
Melalui penggunaan penalaran logika dan abstraksi, matematika berkembang dari pencacahan, perhitungan, pengukuran, dan pengkajian sistematis terhadap bangun dan pergerakan benda-benda fisika. Matematika praktis telah menjadi kegiatan manusia sejak adanya rekaman tertulis. Argumentasi kaku pertama muncul di dalam Matematika Yunani, terutama di dalam karya Euklides, Elemen.
Matematika selalu berkembang, misalnya di Cina pada tahun 300 SM, di India pada tahun 100 M, dan di Arab pada tahun 800 M, hingga zaman Renaisans, ketika temuan baru matematika berinteraksi dengan penemuan ilmiah baru yang mengarah pada peningkatan yang cepat di dalam laju penemuan matematika yang berlanjut hingga kini.[7]
Kini, matematika digunakan di seluruh dunia sebagai alat penting di berbagai bidang, termasuk ilmu alam, teknik, kedokteran/medis, dan ilmu sosial seperti ekonomi, dan psikologi. Matematika terapan, cabang matematika yang melingkupi penerapan pengetahuan matematika ke bidang-bidang lain, mengilhami dan membuat penggunaan temuan-temuan matematika baru, dan kadang-kadang mengarah pada pengembangan disiplin-disiplin ilmu yang sepenuhnya baru, seperti statistika dan teori permainan.
Para matematikawan juga bergulat di dalam matematika murni, atau matematika untuk perkembangan matematika itu sendiri, tanpa adanya penerapan di dalam pikiran, meskipun penerapan praktis yang menjadi latar munculnya matematika murni ternyata seringkali ditemukan terkemudian.[8]
SEJARAH
Evolusi matematika dapat dipandang sebagai sederetan abstraksi yang selalu bertambah banyak, atau perkataan lainnya perluasan pokok masalah. Abstraksi mula-mula, yang juga berlaku pada banyak binatang[10], adalah tentang bilangan: pernyataan bahwa dua apel dan dua jeruk (sebagai contoh) memiliki jumlah yang sama.
Selain mengetahui cara mencacah objek-objek fisika, manusia prasejarah juga mengenali cara mencacah besaran abstrak, seperti waktu — hari, musim, tahun. Aritmetika dasar (penjumlahan, pengurangan, perkalian, dan pembagian) mengikuti secara alami.
Langkah selanjutnya memerlukan penulisan atau sistem lain untuk mencatatkan bilangan, semisal tali atau dawai bersimpul yang disebut quipu dipakai oleh bangsa Inca untuk menyimpan data numerik. Sistem bilangan ada banyak dan bermacam-macam, bilangan tertulis yang pertama diketahui ada di dalam naskah warisan Mesir Kuno di Kerajaan Tengah Mesir, Lembaran Matematika Rhind.
Penggunaan terkuno matematika adalah di dalam perdagangan, pengukuran tanah, pelukisan, dan pola-pola penenunan dan pencatatan waktu dan tidak pernah berkembang luas hingga tahun 3000 SM ke muka ketika orang Babilonia dan Mesir Kuno mulai menggunakan aritmetika, aljabar, dan geometri untuk penghitungan pajak dan urusan keuangan lainnya, bangunan dan konstruksi, dan astronomi.[11] Pengkajian matematika yang sistematis di dalam kebenarannya sendiri dimulai pada zaman Yunani Kuno antara tahun 600 dan 300 SM.
Matematika sejak saat itu segera berkembang luas, dan terdapat interaksi bermanfaat antara matematika dan sains, menguntungkan kedua belah pihak. Penemuan-penemuan matematika dibuat sepanjang sejarah dan berlanjut hingga kini. Menurut Mikhail B. Sevryuk, pada Januari 2006 terbitan Bulletin of the American Mathematical Society, "Banyaknya makalah dan buku yang dilibatkan di dalam basis data Mathematical Reviews sejak 1940 (tahun pertama beroperasinya MR) kini melebihi 1,9 juta, dan melebihi 75 ribu artikel ditambahkan ke dalam basis data itu tiap tahun. Sebagian besar karya di samudera ini berisi teorema matematika baru beserta bukti-buktinya."[12]
Ilham, matematika murni dan terapan, dan estetika
Matematika muncul pada saat dihadapinya masalah-masalah yang rumit yang melibatkan kuantitas, struktur, ruang, atau perubahan. Mulanya masalah-masalah itu dijumpai di dalam perdagangan, pengukuran tanah, dan kemudian astronomi; kini, semua ilmu pengetahuan menganjurkan masalah-masalah yang dikaji oleh para matematikawan, dan banyak masalah yang muncul di dalam matematika itu sendiri. Misalnya, seorang fisikawan Richard Feynman menemukan rumus integral lintasan mekanika kuantum menggunakan paduan nalar matematika dan wawasan fisika, dan teori dawai masa kini, teori ilmiah yang masih berkembang yang berupaya membersatukan empat gaya dasar alami, terus saja mengilhami matematika baru.[13]
Beberapa matematika hanya bersesuaian di dalam wilayah yang mengilhaminya, dan diterapkan untuk memecahkan masalah lanjutan di wilayah itu. Tetapi seringkali matematika diilhami oleh bukti-bukti di satu wilayah ternyata bermanfaat juga di banyak wilayah lainnya, dan menggabungkan persediaan umum konsep-konsep matematika. Fakta yang menakjubkan bahwa matematika "paling murni" sering beralih menjadi memiliki terapan praktis adalah apa yang Eugene Wigner memanggilnya sebagai "Ketidakefektifan Matematika tak ternalar di dalam Ilmu Pengetahuan Alam".[14]
Seperti di sebagian besar wilayah pengkajian, ledakan pengetahuan di zaman ilmiah telah mengarah pada pengkhususan di dalam matematika. Satu perbedaan utama adalah di antara matematika murni dan matematika terapan: sebagian besar matematikawan memusatkan penelitian mereka hanya pada satu wilayah ini, dan kadang-kadang pilihan ini dibuat sedini perkuliahan program sarjana mereka. Beberapa wilayah matematika terapan telah digabungkan dengan tradisi-tradisi yang bersesuaian di luar matematika dan menjadi disiplin yang memiliki hak tersendiri, termasuk statistika, riset operasi, dan ilmu komputer.
Mereka yang berminat kepada matematika seringkali menjumpai suatu aspek estetika tertentu di banyak matematika. Banyak matematikawan berbicara tentang keanggunan matematika, estetika yang tersirat, dan keindahan dari dalamnya. Kesederhanaan dan keumumannya dihargai. Terdapat keindahan di dalam kesederhanaan dan keanggunan bukti yang diberikan, semisal bukti Euclid yakni bahwa terdapat tak-terhingga banyaknya bilangan prima, dan di dalam metode numerik yang anggun bahwa perhitungan laju, yakni transformasi Fourier cepat. G. H. Hardy di dalam A Mathematician's Apology mengungkapkan keyakinan bahwa penganggapan estetika ini, di dalamnya sendiri, cukup untuk mendukung pengkajian matematika murni.[15]
Para matematikawan sering bekerja keras menemukan bukti teorema yang anggun secara khusus, pencarian Paul Erdős sering berkutat pada sejenis pencarian akar dari "Alkitab" di mana Tuhan telah menuliskan bukti-bukti kesukaannya.[16][17] Kepopularan matematika rekreasi adalah isyarat lain bahwa kegembiraan banyak dijumpai ketika seseorang mampu memecahkan soal-soal matematika.
Post a Comment
Post a Comment
This Blog is DOFOLLOW, Well Please Comment and are not included in spam Thank You..
Cheers,
Admin